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Abstract. The textile sector is the backbone of the economy of many
developing countries in South Asia. Diverse machinery fault caused by
intensive production schedules during operation is a major concern for
industries in this sector. There exist several systems in the state-of-the-
art literature for detecting textile machinery faults where faulty output
is already produced before machine fault detection. In this study, we pro-
pose a vibration-based machinery fault detection system for the textile
industry. We use a highly sensitive accelerometer to detect even the tini-
est vibration changes. Using the accelerometer, we produce a data set by
creating six artificial faults in the machine and measuring the vibration of
the machine during those faults. Next, we perform Fast Fourier analysis
to derive the machine frequency and statistical analysis to detect vibra-
tion variation during different faults. We find that there is a change in
the machine frequency and vibration respectively during different faults.
Then, we run eight different machine learning algorithms to detect the
type of fault in the machine. We measure the precision, recall, and F1
score of our machine learning models through ten-fold cross-validation.
We get the highest F1 score of 98.9% using the Decision Tree classifier.
Finally, we construct a real device by implementing our trained machine
learning model in Arduino to identify machine faults which demonstrate
the utility of our proposed approach in real scenarios.
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1 Introduction

The textile and clothing industries are the main source of foreign currency for
developing south Asian countries. Bangladesh is the world’s second-largest ap-
parel garment exporter in the global textile market [14]. This sector contributes
80% of all exports [11] in this country. The textile industry consists of robust
machinery like spinning, weaving, and finishing machinery and delicate machin-
ery like knitting and dyeing machinery. Textile machinery consists of different
mechanical components which contribute to the production of fabric. Damage
or absence of any of these components can result in the production of faulty
fabric [16]. Some of these components are tiny and it is difficult to detect if
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any fault occurs in them. This can result in a stoppage of machines and loss of
production.

Vibration has always been a primary concern of the maintenance department
of any textile factory. It is one of the significant reasons for machinery health
degradation [18]. Typically there is a standard amount of vibration for every
machine. The core concept of vibration-based fault detection is that any struc-
tural fault in a machine results in a change in the structural dynamics which
changes the machine vibration [3]. Existing vibration-based fault detection sys-
tems [20,2,5] are trained with only a small amount of data set. Hence, they lack
accuracy. Existing photoelectric-based fault detection approaches [29,30] are not
suitable for the industry since they are expensive and difficult to implement.
Moreover, there are approaches to detecting textile machine fault indirectly
through detecting the fabric fault [17,10,15,12,28]. However, these approaches
are not real-time and can not detect machine faults until the produced fabric is
damaged.

In this paper, we use a sensitive accelerometer to measure the vibration
of a machine on three different axes. Then, we create six different frequently
occurring faults in the machine artificially. We measure the machine vibration
during each fault. We store the data on a computer. We create a data set from the
vibration data during different faults. First, we analyze if there is any difference
in vibration due to machine fault. For this, we use Fast Fourier Analysis which
gives us information about the machine frequency during each fault. We also
perform statistical analysis to detect the difference in vibration during the faults.
We find that there is a significant difference in machine frequency during the
faults and also a difference in vibration value. Next, we use our data set to
train eight different machine learning algorithms. Furthermore, we evaluate the
accuracy of the trained models by calculating the precision, recall, and F1 score
of each trained machine-learning model. Then we take the model with the best
accuracy and use that to make an Arduino library. We install the library in
Arduino to build a real device that can detect machine faults in real time by
measuring machine vibration.

Based on our work, we make the following contributions:

– We measure the machinery vibration by a highly sensitive ADXL-345 ac-
celerometer on three different axes such as X, Y, and Z. The sensor can
measure the tiniest vibration which is important because our experimented
machine has a very minimum amount of vibration.

– We prepare a machinery fault data set by creating six artificial faults in a real
textile machine and measuring the vibration during those faulty conditions.

– We conduct a Fast Fourier analysis of the machinery vibration data, which
separates the vibration signal wave into its components on different frequen-
cies. From this analysis, we find the actual frequency of the machine. Besides,
we find that the machine frequency changes during faulty conditions.

– We conduct the statistical analysis of the data which gives information on
vibration variation during different faults. From both the Fast Fourier and
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statistical analysis we find that there is a significant difference in vibration
during different faults.

– We train different machine learning algorithms by our prepared data set and
use ten-fold cross-validation to measure the precision, recall, and F1 score of
our model. Here, we find that the Decision Tree classifier algorithm delivers
a 98.9% F1 score while detecting different faults.

– We construct a real machine fault detection device by implementing our
trained machine learning model in Arduino. This device can detect textile
machinery faults in real-time in factory scenarios.

2 Background and Related work

The textile industry runs on three shifts per day and each shift spans eight hours.
Due to the long working hour of the machinery, most of the machinery becomes
fatigued and personnel maintaining these machineries also become inattentive.
As a result, different faults occur in the machinery and due to the busy schedule
often maintenance team reaches the machine very late. This problem can be
solved only when there is a proper fault detection system for the machinery.
Among all the machinery in the textile industry, the knitting machine is the most
delicate one. It has very tiny components. Hence, whenever a small fault occurs
in the machinery, it is really difficult to identify it with the naked eye although
its impact on fabric quality can be significantly harmful. Circular weft knitting
machines typically have latch needles. The needle does the main function of the
knitting action which is loop formation. The sinkers in the weft knitting machine
hold down the old loop while the needle knocks over the new loop. This function
is known as ’holding down’ [1]. If there is any fault in these components the
production of fabric will not occur properly and the produced fabric will become
faulty. Moreover, if the production rate is high, a huge amount of knit fabric will
be defective. So, it is necessary to identify the fault in these components as soon
as possible. The purpose of our research is to develop a system that can detect
even the tiniest of defects in the machinery just by measuring its vibration in
real time.

2.1 Vibration-based Fault Detection

Mohamad et al., proposed a diagnostic method using a combination of nonlinear
dynamic analysis and computational intelligence techniques in a vibration-based
fault diagnosis in nonlinear systems [20]. But the proposed system did not have
real industry data for developing the system. Mainghai et al., proposed a sys-
tem where a piezoelectric type accelerometer is used for diagnosing the faults on
a hydraulic brake system of a light motor vehicle done on nine fault conditions
and one good condition [2]. They also used the machine learning approach. How-
ever, only 55 data were used for testing every fault condition. Bhuiyan et al.,
proposed a wireless vibration-based machinery health monitoring system that
used a simple vibration sensor for data collection [5]. However, no-fault analysis
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was done in the proposed system. Senapathy et al., proposed a vibration-based
condition monitoring of rotating machinery [24]. However, the system can only
detect if there is any fault in the machinery. It can not detect the type of fault.
Han et al., proposed a real-time monitoring system of textile equipment based
on MQTT [9]. However, this system requires a huge amount of storage for every
machine which is quite inapplicable in the industry sector. 10 sets of 10000 ingots
need 130GB per day; excessive data transmission will affect the read-write per-
formance of MySQL, resulting in data loss. Patange et al., proposed a machine
learning-based milling cutter condition monitoring system [22]. However, read-
ings from various premade or known faulty conditions of the machine were not
taken in this approach. Peeters et al., proposed envelope spectrum sparsity indi-
cators for bearing and gear vibration-based condition monitoring [23]. However,
this system can not detect the type of fault in the machinery. Mauricio et al.,
proposed a vibration-based condition monitoring system for wind turbine gear-
boxes [19]. However, the system is not tested on real experimentation. Rather it
is evaluated based on publicly available data.

2.2 Photoelectric-based Fault Detection

Zhang et al., proposed a photoelectric detector-based needle fault detection sys-
tem in a circular knitting machine [29]. The proposed system uses a photoelectric
detector that collects the laser signal reflected by the needle and a charge-coupled
device camera takes a photo of the defective needle for identification. However,
this approach to fault identification is quite expensive and difficult to imple-
ment. Furthermore, this device may create a hindrance in the swift workflow of
the worker. Zhang et al., also proposed a machine vision-based needle fault detec-
tion that was very accurate [30]. But this system required a high-brightness linear
supplementary lighting source. This makes the system unrealistic for application
in a real-factory scenario. Iftikhar et al., proposed an intelligent automatic fault
detection technique incorporating image processing and fuzzy logic [13]. How-
ever, the system can only detect machine faults that are visible from the outside.

2.3 Fabric Defect-based Machine Fault Detection

Several researchers use fabric defect identification for identifying machine faults.
A local neighborhood analysis window on the fabric image was used by Kure
et al. [17]. He introduced the image variation coefficient that can identify fabric
defects. Furthermore, it indirectly gives feedback on the stitch state. Hannay
et al., [10] established a fabric defect image database. He performed a shearlet
transformation on the fabric image so that he can obtain high-dimensional fea-
ture vectors that correspond to defects in the images. Jia et al., fabric defect
inspection based on isotropic lattice segmentation [15]. Guanghua et al., pro-
posed a fabric defect identification by a deep convolutional generative adversar-
ial network (DCGAN) [12]. Zhang et al., proposed a fabric defect identification
algorithm based on the Gabor filter that can identify machine fault by detecting
fabric fault [28]. These approaches can identify machine faults by identifying a
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fabric fault. But these systems fail when there is a machine fault without oc-
curring any fabric fault. Furthermore, these systems are not real-time. Fouda et
al., proposed an online quality control system for a single jersey circular knitting
machine [8]. However, this system can not detect machine faults if there is no
laddering effect on the produced fabric.

2.4 Machine Learning-based Fault Detection

Caggiano et al., proposed a machine learning-based image processing for online
defect recognition in additive manufacturing [6]. The system detects machine
faults by detecting a material defect. Sobie et al., proposed a system for ma-
chine learning-based bearing fault detection [25]. In the work, training data for
the machine learning algorithm is generated by the information gained from
the high-resolution simulation of roller bearings. No real experimentation with
bearing was done here for fault detection. Delli et al., proposed an automated
process monitoring system in 3D printing by supervised machine learning [7]. In
this paper SVM (Support Vector Machine) algorithm was used to classify the
parts into the ’good’ or ’defective’ categories. From identifying the defect, the
machine defect was identified. Nasrabadi et al., proposed a CNN-based condi-
tion monitoring system for turbine blades [27]. However, this approach fails to
detect the type of fault in the machinery. Nisha [21] et al., proposed a fabric
defect detection system through image pre-processing, feature extraction, and
defect detection and classification by the multi-SVM algorithm. It identifies the
presence of any machine fault by identifying fabric faults like an oil stain, ink
stain, soil stain, etc. Bandara et al., proposed an automatic fabric defect detec-
tion system which in terms indicates machine fault [4]. It detects fabric faults
through image pre-processing and Neural Networks.

The major problem with these approaches is, that these systems can detect
machine faults only after a defective output is generated. Furthermore, they
do not give information on which machine part is defective. In contrast, our
system can detect machine faults before the generation of faulty output because
it directly detects the machine’s fault.

3 Proposed Methodology

In this section, we discuss the construction and working algorithm of our system.

3.1 System Design

Our device consists of one ADXL345 accelerometer, one DS-3231 real-time clock,
and an Arduino Uno R3 as a controller module. The block diagram of our device
is shown in Figure 1. The accelerometer senses the vibration data of the machine
and gives outputs as acceleration on the X, Y, and Z-axis.
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Fig. 1: Block diagram of our proposed system

Sensor In our previous approach [5], we used the SW-420 vibration sensor. The
problem regarding this sensor is, this sensor only gives numerical values indi-
cating the intensity of vibration. It does not show any direction of vibration or
any unit of vibration. In the case of the piezo sensor, they require an additional
arrangement for measuring vibration, since the signal from the piezo sensor is
very low. In order to get more meaningful vibration data, we use ADXL345 ac-
celerometer in this approach. It is a three-axis acceleration measurement system
and it has a choosable measurement range of either ±2 g, ±4 g, ±8 g, or ±16 g. It
measures two types of acceleration. These are dynamic acceleration that results
from motion or shock and static acceleration, such as gravity which broadens
its application as a tilt sensor. The sensor itself is a poly silicon-surface-micro
machined structure that is built on the top of a silicon wafer [26]. It consists of
independent fixed plates and plates attached to the moving mass. When vibra-
tion occurs, the acceleration deflects the beam and unbalances the differential
capacitor, which results in sensor output.

We use PuTTy software for data storage. It is a free and open-source ter-
minal emulator. It can also be used as a serial console and network file transfer
application. PuTTy software provides support for several network protocols, in-
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cluding SCP, SSH, Telnet, login, and raw socket connection. For data collection
from Arduino, the software has to be able to connect to the serial port. PuTTy
software can connect to the Arduino serial port. The software shows the real-
time data on the monitor and saves the data into a text, CSV file. Which can
be later used to analyze the data.

Machine Learning We use the stored raw accelerometer data to train the
machine learning algorithms. For each condition 2000 sample data for each axis;
in total 3 axes, 6000 sample data were stored for each condition (2000 data
for each axis). In total, 42000 sample data was taken on the circular knitting
machine under 7 conditions. The sampling rate was 50.

Data Labeling First, we label the data according to the fault during which the vi-
bration was measured. We use the following labels: Machine ok, Needle missing,
Broken hook, Broken latch, Sinker missing, Faulty sinker, Broken butt sinker.
For each fault, 6000 data points are given on 3 axes (on each axis 2000 data
points)

Machine Learning Algorithm We input the categorized labeled data in eight dif-
ferent machine learning algorithms.
Features: Vibration acceleration on X, Y, and Z axis as input. The type of fault
as output.
The algorithms that are used are Decision Tree Classifier, Random Forest Classi-
fier, Support Vector Machine, K Nearest Neighbors, Nearest Centroid, K Nearest
Neighbors, Stochastic Gradient Descent, Gaussian Naive Bayes, and Gradient
Boosting.

Evaluation of Machine Learning Models We use ten-fold cross-validation
to evaluate our machine learning algorithms by calculating precision, recall, and
F1 score. First, the dataset is divided into ten folds. The cross-validation method
takes a random fold as the test dataset and takes the remaining nine folds as the
training dataset. It then fits a model on the training set and evaluates it based
on the test set. Then it takes another fold as the test set and the remaining nine
folds as the training set and so on. This process continues until all the folds are
taken as a test set. Hence, it gives us ten evaluation results of the model. Finally,
we find the mean precision, recall, and F1 scores of the ten test results of the
cross-validation.

3.2 Algorithm

We implement our system on one of the most common machinery of the textile
industry: the knitting machine. Firstly, we set the ADXL 345 accelerometer on
the machine. Then we run the machine in a normal condition. We use PuTTy
software for real-time monitoring and storing of the data. After saving the data
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for almost 2 minutes, we stop the machine. We use a sampling rate of 50 sam-
ples/second. Then we open the upper cover of the cylinder and take out a needle.
Then we start the machine again and monitor and store the vibration data in the
same manner. We repeat this process for different conditions such as replacing
a proper needle with a hook broken needle or a latch broken needle, replacing a
sinker with a faulty sinker or butt broken sinker, and running the machine while
a sinker is missing. Then we do a Fast Fourier analysis of the data to find out
the frequency of the vibration measured under different conditions. We also do
a statistical analysis to find the difference in vibration in different conditions.
After that, we label the data according to the respective condition. We use the
data set to train eight different machine-learning algorithms. We test the preci-
sion, recall, and F1 scores of these trained machine-learning models by ten-fold
cross-validation.

4 Experimental Evaluation

In this section, we discuss the experimentation and the analysis of experimented
data.

4.1 Industrial Data Collection

We go to the Saad Knitwear Limited knit fabric production section. There we
test our device on a circular knitting machine (Figure 2b) for experimental eval-
uation and preparation of the data set. We artificially create six different faults
in the needle and sinker (the faults are shown in Figure 3) and measure the vi-
bration during these conditions. The parts of the needle and sinker are shown in
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Figure 2a. A significant change in vibration during any fault makes the fault de-
tectable through monitoring of vibration data. The faults that were chosen for
experimentation are missing needle, broken needle hook, Broken needle latch,
missing sinker, faulty sinker, and butt broken sinker. The reason for choosing
these faults is because these faults occur frequently in the knitting machine dur-
ing normal operation. Furthermore, these faults can create defective fabric which
results in a reduction in production efficiency.

Normal Condition Firstly, we measure the vibration by our device in the
normal condition of the circular knitting machine. Then we do the Fast Fourier
Analysis of the vibration acceleration on the Z-axis. From the FFT, we plot
the acceleration vs frequency graph (Figure 4a). In this condition, the knitting
machine will produce fabric without any fault.

Missing Needle Then we take a needle out of the machine cylinder. For that,
we first remove the cam guiding the needle path. After that, we remove a nee-
dle and restart the machine. We measure the vibration and then do an fft on
the sensor data (Figure 4b). If a needle is missing in the knitting machine dur-
ing production, it can cause an empty straight line on the fabric, resulting in
defective fabric and production wastage.

Broken Needle Hook A broken needle hook can cause severe problems in
production by producing drop stitches in the knitted fabric. We replace a perfect
needle with the hook broken needle, and then measure the machine’s vibration.
Then fft of the vibration is done (Figure 4c).

Broken Needle Latch A needle latch is used for enclosing the hook during the
loop formation of the knitting cycle. We break the latch of the needle and replace
a perfect needle in the machine with this latch broken needle. The absence of
a latch in the needle can result in absence of loop formation which can finally
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Fig. 4: FFT analysis of knitting machine’s vibration data in normal condition
and different needle faults

result in a drop stitch. We measure the machine vibration in this condition and
do fft. (Figure 4d)

Missing Sinker Sometimes due to workers’ unawareness, sinkers can be found
missing from the sinker ring of the circular knitting machine. Since sinkers per-
form the important function of ’holding down’ in weft knitting machines, their
absence can cause a heavy fault in the produced fabric. We deliberately take
a sinker out of the sinker rail. Then we test and analyze the vibration by Fast
Fourier transform (Figure 5a)

Faulty Sinker A faulty sinker may fail to perform its function properly. Which
will hamper the knitting cycle since it will not perform the holding-down function
properly. As a result, defective fabric will be produced. We deliberately bend a
sinker on two sides. After that, we replace a perfect sinker with this faulty sinker
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Fig. 5: FFT analysis of knitting machine’s vibration data in different sinker faults

and restart the machine. Then we follow the same procedure as other conditions.
(Figure 5b)

Butt Broken Sinker Due to misalignment, the sinkers’ butt can be broken.
When a sinker butt is broken, it fails to follow the cam track resulting in fault
in the fabric. We intentionally break the butt of a sinker and replace that sinker
with a perfect sinker for the machine. Finally, we measure the vibration to see
if there is any change in total machine vibration due to this fault (shown in
Figure 5c)

4.2 Statistical analysis

To further evaluate our data set, we perform statistical analysis on our data. We
calculate different parameters of our data: mean, median, standard deviation,
kurtosis, skewness, minimum and maximum value. Next, we check if there is a
difference in these values during different faults.



12 Bhuiyan et al.

Table 1: Vibration changes during different faults based on acceleration and
frequency parameter

Condition Acceleration (m/s2) Frequency (Hz)

Normal 0.1162 9.155
Missing needle 0.1927 8.13
Broken hook 0.1456 9.326
Broken latch 0.1251 9.717
Missing sinker 0.1476 9.619
Faulty sinker 0.1471 9.692

Broken butt sinker 0.0554 17.65

4.3 Findings

In this section, we discuss the significant findings that we got from the experi-
mentation on Saad knitwear limited.

We find vibration data from the ADXL 345 accelerometer in the acceleration
(m/s2) unit. We then do the Fast Fourier Transform on the data and get the
frequency component of the data.

The acceleration and frequency of the vibration during different faults are
shown for clear understanding in Table 1

Comparison Regarding Needle Firstly we analyze the data from the accel-
eration values that are expressed in m/s2. From the acceleration data, we see
the strength of the occurring vibration. From Table 1, we plot Figure 6a. There
we see that the vibration measured in acceleration rises when we take out a
needle from the cylinder. The acceleration falls a bit after the missing needle
spot is replaced with a needle that has a broken hook. However, the vibration
still stays higher than in normal condition. Finally, after we replace the hook
broken needle with a latch broken needle, the vibration falls a bit more while
still being higher than normal vibration. Overall, we see a clear distinction in
the acceleration caused by vibration during different faults.

Then we analyze the data based on frequency values that are derived from
Fast Fourier Analysis. The frequency values express the no of vibration cycles
per second. In other words, it expressed the intensity of the machine vibration.
We plot Figure 6b from the data of Table 1. The vibration frequency drops
significantly when we take out a needle from the cylinder. The frequency rises
significantly again after we replace the empty needle spot with a hook broken
needle. The frequency rises further when the hook broken needle is replaced with
a latch broken needle.

From the two graphs in Figure 6 we can see that during a needle fault, while
the acceleration increases the frequency of the vibration decreases, and when
the acceleration decreases the frequency increases. We can detect the needle
faults in a weft circular knitting machine by observing these changes in vibration
acceleration and frequency.
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Fig. 7: Comparison of vibration data during different sinker faults obtained from
Fast Fourier Analysis

Comparison Regarding Sinker We plot Figure 7 from the data of Table 1. In
the case of sinker faults, Figure 7a shows that the acceleration due to vibration
rises significantly when we take out a sinker from the sinker ring of the circular
knitting machine. The acceleration falls on a very tiny amount after the sinker’s
missing spot is replaced with a faulty sinker. However, the vibration acceleration
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Table 2: Statistical analysis of the vibration data during different faults
Axis Mean Median Mode S.D Kurtosis Skewness Min Max Condition

X

-0.090 -0.08 -0.08 0.175 0.439 -0.402 -0.78 0.43 Machine ok
-0.130 -0.12 -0.04 0.215 -0.602 -0.078 -0.75 0.47 Needle missing
-0.084 -0.08 -0.04 0.194 -0.328 -0.287 -0.71 0.43 Broken hook
-0.074 -0.08 -0.04 0.193 -0.291 -0.249 -0.67 0.47 Broken latch
-0.072 -0.08 -0.08 0.184 -0.333 -0.235 -0.63 0.47 Sinker missing
-0.067 -0.04 0 0.187 -0.169 -0.212 -0.71 0.47 Faulty sinker
-0.064 -0.08 -0.04 0.266 0.036 -0.030 -1.22 0.82 Sinker butt broken

Y

-0.011 0 0 0.149 0.394 0.191 -0.51 0.55 Machine ok
0.006 0 -0.04 0.157 -0.147 0.304 -0.39 0.59 Needle missing
-0.011 0 -0.12 0.189 -0.486 0.194 -0.47 0.59 Broken hook
-0.013 -0.04 -0.08 0.200 -0.478 0.117 -0.59 0.59 Broken latch
-0.020 -0.04 -0.08 0.203 -0.507 0.041 -0.63 0.55 Sinker missing
-0.013 -0.04 -0.04 0.210 -0.562 0.091 -0.55 0.55 Faulty sinker
-0.399 -0.39 -0.12 0.407 -0.683 -0.005 -1.49 0.67 Sinker butt broken

Z

-0.001 0.010 0.05 0.332 -0.151 -0.162 -0.970 0.870 Machine ok
0.000 -0.001 -0.2 0.423 -0.948 0.058 -1.021 0.979 Needle missing
-0.001 0.017 0.24 0.405 -0.848 -0.016 -1.003 0.997 Broken hook
0.001 0.030 0.3 0.427 -0.804 -0.031 -1.110 1.170 Broken latch
0.001 -0.008 0.34 0.433 -0.963 -0.028 -1.108 1.172 Sinker missing
0.005 -0.005 0.30 0.446 -0.927 -0.022 -1.305 1.135 Faulty sinker
-0.001 -0.002 -0.04 0.281 0.008 -0.033 -1.022 1.058 Sinker butt broken

falls significantly when the faulty sinker is replaced with a butt broken sinker.
Hence, we can detect any sinker fault in the machine by monitoring the vibration
data.

Then we analyze the data based on the frequency of Figure 7b. The frequency
of the vibration rises slightly when a sinker is taken out of the machine. The
frequency rises a very tiny amount when the sinker missing spot is replaced with
a faulty sinker. The frequency rises significantly after the faulty sinker is replaced
with a butt-broken sinker.

During the sinker faults, as the acceleration due to vibration increased the
frequency or the intensity of the vibration decreased. And the frequency of the
vibration increased when the acceleration due to vibration decreased. The faults
of the sinker in a weft circular knitting machine can be detected by observing
these changes in vibration data.

Result of Statistical Analysis Table 2 shows some statistical analysis of our
dataset. We see that, on three different axes, there is a significant change in
the different parameters such as mean, median, kurtosis, skewness, etc of the
vibration data. As we artificially create a fault in the machine, the machine’s
vibration changes. Hence, feeding this data to any machine learning algorithm
can help in detecting the machine fault by measuring its vibration.
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Table 3: Evaluation of our machine learning models
ML Algorithm Precision (%) Recall (%) F1 score (%)

DecisionTree Classifier 99.4 98.3 98.9

Gradient Boosting 100 39.5 56.5

Random Forest Classifier 48.3 28.6 36.8

K Nearest Neighbors 28.1 26.3 26.6

Gaussian Naive Bayes 24.0 26.0 24.0

Support Vector Machine 21.0 23.0 20.0

Stochastic Gradient Descent 12.3 22.1 13.9

Nearest Centroid 16.2 54.2 24.5

Accuracy of ML models Through cross-validation, we find the highest pre-
cision in the Gradient Boosting classifier and highest recall and F1 score in the
Decision Tree Classifier algorithm, and the lowest in the Nearest Centroid al-
gorithm. The precision, recall, and F1 scores of the machine learning model in
different algorithms are shown in Table 3. The reason for finding the highest
recall and F1 score and very high precision is the type of our data set. Our data
set has discontinuous data which are very suitable for the Decision Tree Clas-
sifier algorithm. The recall and F1 scores in Random Forest Classifier were low
because this algorithm works well with high dimensional data which has a large
number of features. However, our data set has only 3 features. The number of
estimators used was five. The support vector machine has low precision, recall,
and F1 score for the same reason as the random forest algorithm. SVM also
works well with high-dimensional data. Since our data is low dimensional, SVM
has low accuracy. We use the linear kernel for SVM as it gives better accuracy
than using other kernels. For the K Nearest Neighbor Classifier highest accuracy
is found when the number of neighbors is one.

4.4 Fault Detection for Other Machinery

This methodology can be used to detect the fault in other machinery. The vibra-
tion is largely dependent on the unique structure of every machine. To implement
this system, first, a fault data set have to be prepared by measuring the machine
vibration during different fault. Then we have to train different machine learning
algorithms using this data set and use those trained models to detect machine
faults.

5 Real-Device Construction

To construct a device that can detect the machine’s fault in real-time, we need to
apply the machine learning algorithm in Arduino. We use the micromlgen library
in python to get the raw code of different machine-learning algorithms according
to our data set. We use that code to produce a header file that can be used to
make an Arduino library. We use that library in Arduino. The Arduino then can
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Fig. 8: Application of machine learning model in Arduino Uno

detect machine faults on spot and show the machine fault in the serial monitor.
This device only consists of an Arduino Uno and an accelerometer. Hence, by
using this low-resource device, the maintenance personnel and machine operators
can detect machine faults in real-time.

6 Conclusion

This paper presents a machine learning-based fault detection system for textile
machinery. We prepare a machinery fault data set from real experimentation
on textile machinery. Fast Fourier analysis of the data indicates that the ma-
chinery shows a change in vibration frequency when during the occurrence of
any fault. Furthermore, we develop different machine learning models that can
detect machinery faults by training eight different machine learning algorithms.
Among the different machine learning algorithms, the Decision Tree Classifier
algorithm shows 98.9% F1 score. We measure these parameters through ten-fold
cross-validation. The maintenance department in the textile industry can detect
machine faults automatically with the help of our fault detection system which
can reduce the chances of faulty fabric production. This can result in improving
the production efficiency and safety of machinery.

In the future, we will test the impact of different sampling frequencies on the
accuracy of machine-learning models. Furthermore, we plan to produce a more
effective data set by varying more parameters in a textile machine. We will test
our device for real-time fault detection in industry scenarios.
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10. Hanbay, K., Talu, M.F., Özgüven, Ö.F., Öztürk, D.: Real-time detection of knitting
fabric defects using shearlet transform. Textile and Apparel 29(1), 1–10 (2019)

11. Hasan, M.Z., Haque, S., Khan, E.A.N., et al.: Buyer paying lower price of
bangladeshi apparel: An empirical investigation on causes. American Scientific
Research Journal for Engineering, Technology, and Sciences (ASRJETS) 72(1),
152–161 (2020)

12. Hu, G., Huang, J., Wang, Q., Li, J., Xu, Z., Huang, X.: Unsupervised fabric defect
detection based on a deep convolutional generative adversarial network. Textile
Research Journal 90(3-4), 247–270 (2020)

13. Iftikhar, K., Anwar, S., Khan, M.T., Djawad, Y.A.: An intelligent automatic fault
detection technique incorporating image processing and fuzzy logic. In: Journal of
Physics: Conference Series. vol. 1244, p. 012035. IOP Publishing (2019)

14. Islam, M.S.: Ready-made garments exports earning and its contribution to eco-
nomic growth in bangladesh. GeoJournal 86(3), 1301–1309 (2021)

15. Jia, L., Liang, J.: Fabric defect inspection based on isotropic lattice segmentation.
Journal of the Franklin Institute 354(13), 5694–5738 (2017)

16. Ku, P., Zhang, Z., Xu, G., Yang, D.: Design and analysis of finishing and detection
device for knitting needle. In: 2021 4th International Conference on Advanced
Electronic Materials, Computers and Software Engineering (AEMCSE). pp. 1254–
1259. IEEE (2021)

17. Kure, N., Biradar, M.S., Bhangale, K.B.: Local neighborhood analysis for fabric de-
fect detection. In: 2017 International Conference on Information, Communication,
Instrumentation and Control (ICICIC). pp. 1–5. IEEE (2017)

18. Kushwah, K., Sahoo, S., Joshuva, A.: Health monitoring of wind turbine blades
through vibration signal using machine learning techniques. In: Proceedings of the

https://doi.org/10.1088/1742-6596/1948/1/012024
https://doi.org/10.1088/1742-6596/1948/1/012024


18 Bhuiyan et al.

International Conference on Computing and Communication Systems: I3CS 2020,
NEHU, Shillong, India. vol. 170, p. 239. Springer (2021)

19. Mauricio, A., Qi, J., Gryllias, K.: Vibration-based condition monitoring of wind
turbine gearboxes based on cyclostationary analysis. Journal of Engineering for
Gas Turbines and Power 141(3) (2019)

20. Mohamad, T.H., Nazari, F., Nataraj, C.: A review of phase space topology methods
for vibration-based fault diagnostics in nonlinear systems. Journal of Vibration
Engineering & Technologies 8(3), 393–401 (2020)

21. Nisha, F., Vasuki, P., Mansoor Roomi, M.: Fabric defect detection using sparse
representation algorithm. Journal of Engineering pp. 1–7 (2018)

22. Patange, A.D., Jegadeeshwaran, R., Dhobale, N.C.: Milling cutter condition mon-
itoring using machine learning approach. IOP Conference Series: Materials Sci-
ence and Engineering 624(1), 012030 (oct 2019). https://doi.org/10.1088/1757-
899x/624/1/012030, https://doi.org/10.1088/1757-899x/624/1/012030

23. Peeters, C., Antoni, J., Helsen, J.: Blind filters based on envelope
spectrum sparsity indicators for bearing and gear vibration-based condi-
tion monitoring. Mechanical Systems and Signal Processing 138, 106556
(2020). https://doi.org/https://doi.org/10.1016/j.ymssp.2019.106556, https://

www.sciencedirect.com/science/article/pii/S0888327019307770

24. Senapaty, G., Rao, U.S.: Vibration based condition monitoring of rotating machin-
ery. In: MATEC Web of Conferences. vol. 144, p. 01021. EDP Sciences (2018)

25. Sobie, C., Freitas, C., Nicolai, M.: Simulation-driven machine learning: Bearing
fault classification. Mechanical Systems and Signal Processing 99, 403–419 (2018)

26. technology way, O.: Adxl345 pdf, adxl345 description, adxl345 datasheets,
adxl345 view alldatasheet. https://pdf1.alldatasheet.com/datasheet-pdf/

view/254714/AD/ADXL345.html (9 2021), (Accessed on 09/20/2021)
27. Yaghoubi Nasrabadi, Vahid and Cheng, Liangliang and Van Paepegem, Wim

and Kersemans, Mathias: Data preparation for training CNNs : application to
vibration-based condition monitoring. In: 1st NeurIPS Data-Centric AI workshop
(DCAI 2021), Proceedings. p. 5 (2021), https://datacentricai.org/neurips21/
papers/103_CameraReady_Yaghoubi_DCAI_CR.pdf

28. Zhang, D., Gao, G., Li, C.: Fabric defect detection algorithm based on gabor filter
and low-rank decomposition. In: Eighth International Conference on Digital Image
Processing (ICDIP 2016). vol. 10033, p. 100330L. International Society for Optics
and Photonics (2016)

29. Zhang, Z., Bai, S., Xu, G.s., Liu, X., Jia, J., Feng, Z., Wang, F.: Knitting needle
fault detection system for hosiery machine based on laser detection and machine
vision. Textile Research Journal 91(1-2), 143–151 (2021)

30. Zhang, Z., Bai, S., Xu, G.s., Liu, X., Wang, F., Jia, J., Feng, Z.: Research on the
knitting needle detection system of a hosiery machine based on machine vision.
Textile Research Journal 90(15-16), 1730–1740 (2020)

https://doi.org/10.1088/1757-899x/624/1/012030
https://doi.org/10.1088/1757-899x/624/1/012030
https://doi.org/10.1088/1757-899x/624/1/012030
https://doi.org/https://doi.org/10.1016/j.ymssp.2019.106556
https://www.sciencedirect.com/science/article/pii/S0888327019307770
https://www.sciencedirect.com/science/article/pii/S0888327019307770
https://pdf1.alldatasheet.com/datasheet-pdf/view/254714/AD/ADXL345.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/254714/AD/ADXL345.html
https://datacentricai.org/neurips21/papers/103_CameraReady_Yaghoubi_DCAI_CR.pdf
https://datacentricai.org/neurips21/papers/103_CameraReady_Yaghoubi_DCAI_CR.pdf

	Devising a Vibration-Based Fault Detection System for Textile Machinery

