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a b s t r a c t

Large mass gatherings such as pilgrimages, protests, etc., often pose serious challenges for the crowd
management personnel to maintain public safety and security especially in dense crowds. These
challenges can be mitigated through estimating the number of attendees as well as localizing them in
a particular crowded event, where existing research studies are yet to provide accurate information in
an efficient manner. Therefore, in this paper, we propose a novel deep learning architecture namely
LC-Net to precisely and efficiently locate as well as count the attendees in dense crowds using
a crowd localization map. Here, we exploit the notions of residual layers and dilated convolution
to improve both the accuracy and efficiency of our architecture. Besides, we propose a new data
augmentation technique to resize the high-resolution training images based on crowd density that
substantially boosts our localization accuracy. Rigorous experimental evaluation of our proposed LC-
Net over four different public crowd datasets such as NWPU-Crowd, UCF-QNRF, ShanghaiTech-A,
and ShanghaiTech-B shows a substantial performance improvement while using LC-Net in terms of
precision and recall in most of the cases. The improvement eventually results in an improved F1 score
in all cases compared to the state-of-the-art approaches. Further, we present a real implementation of
our proposed approach using a client–server application. In the server, we execute the LC-Net model
over the images captured in real-time using an IP Camera and then visualize the results in a graphical
manner. This implementation demonstrates the applicability of our proposed approach in real cases.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

A myriad number of crowded events take place every year
round the world for different purposes such as religious events,
ports events, political events, cultural events, etc. Among these
vents, Hajj, the Islamic pilgrimage to Mecca, Saudi Arabia, is
erhaps the largest and most long-standing annual mass gath-
ring event on the earth [1]. According to General Authority
or Statistics, approximately 2.5 million pilgrims attended this
ive-day long pilgrimage in 2019 [2]. Mismanagement in such
arge mass gatherings can lead to catastrophic results such as
tampede [3]. In order to ensure public safety and security in such
arge mass gatherings, estimating the number of people along
ith their locations can facilitate the crowd monitoring activities
erformed by the management personnel [4].
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To estimate the number of people in a crowded area, most
of the existing research studies estimate a person-density map
followed by computing integral over this map to yield a final
count [5,6]. Although this approach results in a precise count of
people in a crowd, it cannot provide location information of a
person in the crowd [7]. Such location information is required
for performing crowd monitoring activities such as pedestrian
tracking [4], crowd flow estimation [8], etc. There exists a few
research work [4,7] found in the literature that provide location
information of a person in a highly crowded event. However,
due to their architectural limitations, these approaches exhibit
poor localization accuracy for initiating a crowd tracking algo-
rithm [9]. Besides, these approaches demand higher computa-
tional resources that makes them inappropriate in different cases
such as real-time deployment [10].

As a remedy of the aforementioned problems, we propose
a novel deep learning architecture named Localized Counting
Network (LC-Net) that uses the crowd localization map to locate
a person precisely in dense crowds. Here, we exploit residual
layers and dilated convolution to improve both the accuracy

and efficiency of our architecture. In addition, we propose a
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ovel density-based image resizing technique for data augmen-
ation used in the training stage that substantially boosts the
ocalization accuracy. We evaluate the performance of LC-Net
gainst state-of-the-art crowd localization approaches over four
ifferent public crowd datasets namely NWPU-Crowd [8], UCF-
NRF [4], ShanghaiTech-A [6], and ShanghaiTech-B [6]. Our eval-
ation demonstrates a substantial performance improvement in
erms of precision and recall in most of the cases, which eventu-
lly results in an improved F1 score in all the cases. Based on our
ork, we make the following set of contributions in this paper:

• We propose a novel end-to-end trainable deep learning
architecture named LC-Net for accurate crowd localization
in an efficient manner through exploiting residual layers and
dilated convolution.

• We propose a new data augmentation technique to resize
the high-resolution images based on crowd density used in
the model training stage.

• We compare the performance of LC-Net against the state-
of-the-art crowd localization approaches over two most re-
cent and comprehensive crowd datasets namely NWPU-
Crowd and UCF-QNRF, and achieve substantial improve-
ment in F1 score. Besides, we compare our proposed LC-Net
over two older and less comprehensive datasets namely
ShanghaiTech-A and ShanghaiTech-B to confirm the robust-
ness of our proposed method.

• For real-world implementation, we propose a client–server
application, where a Raspberry Pi (client) captures the crowd
images and uploads them to a web server. In the server,
we perform crowd localization tasks using LC-Net. Finally,
we visualize the crowd counting values as per the pro-
posed client–server to demonstrate the applicability of our
proposed approach.

We organize the rest of this paper in the following way. In
ection 2, we will discuss the research studies related to this
aper. After that, we will show the proposed approach and dis-
uss the technical details of LC-Net architecture in Section 3.
ext, we will discuss the corresponding training methodology in
ection 4. We show the experimental results in Section 5. Next,
e will present a real implementation of our proposed approach

n Section 6. Finally, we will conclude this paper mentioning some
uture work.

. Related work

In earlier stages of crowd analysis, various basic machine
earning and computer vision algorithms such as detection, re-
ression, and density-based approaches were developed to pre-
ict crowd density maps [11]. However, these methods cannot
andle various challenges such as variations in scale and perspec-
ive, occlusions, non-uniform density, etc. Over the last few years,
ith the help of convolutional neural network (CNN), researchers
itigate these challenges over a wide range of scenarios.
In case of a crowd counting technique adopting a density

ap-based approach, the ground truth density map is gener-
ted by defining a normalized Gaussian distribution around each
nnotated person [7]. Through learning this density map us-
ng convolutional neural network, state-of-the-art methods can
redict the crowd count with lower error over public crowd
atasets. For example, Li et al. [5] proposed an efficient crowd
ounting network named Congested Scene Recognition Network
CSRNet) through adding a Dilation module on top of the VGG-
6 backbone. Besides, Liu et al. [12] proposed a context-aware
rowd counting network through combining the features of mul-
iple streams using different respective field sizes. On the other
and, Xiong et al. [13] proposed an efficient crowd counting
 c

2

network named Spatial Divide-and-Conquer Network (S-DCNet)
that transforms open-set counting into a closed-set problem via
dividing a dense image until the crowd count of sub-images
becomes similar to previously observed closed set. Nonetheless,
Ma et al. [14] proposed a novel Bayesian loss function for crowd
counting that constructs a density contribution probability model
from the point annotations.

The common limitation of the aforementioned approaches is
that they cannot provide reliable location information of the
people in the crowd that is required for crowd monitoring ac-
tivities such as crowd tracking and crowd flow estimation [8].
To address this issue, Idrees et al. [4] proposed a novel com-
position loss function for counting, density map estimation, and
localization in dense crowds. In their architecture, they used
DenseNet-201 [15] as the backbone that requires higher com-
putational resources [16] making them inappropriate in different
cases such as real-time deployment [17]. On the other hand, Liu
et al. [7] proposed a novel crowd counting and localization frame-
work named Recurrent Attentive Zooming Network (RAZ_Net)
that recurrently detects ambiguous image region and zooms it
into a high resolution for re-inspection. In their architecture, they
used VGG-16 [18] as the backbone, which suffers from vanishing
gradient problem [19] that causes poor localization accuracy re-
sulting in high false outputs. As a remedy of the aforementioned
inefficiency and low accuracy problems, we propose a novel deep
learning architecture named LC-Net in this paper.

3. Our proposed architecture

Our proposed Localized Counting Network (LC-Net) has two
parts namely backbone network and head network. The backbone
network extracts low-level information from raw images and
forwards them to the head network. The head network learns
high-level information and localizes people from the crowd im-
ages. Fig. 1(a) shows the general structure diagram and Fig. 1(b)
shows the detailed network architecture of LC-Net with their
inter-connectivity. Next, we describe both the backbone and head
networks in detail.

3.1. Backbone network

In order to perform accurate and efficient crowd localization,
we design a novel highly precise convolutional structure named
as Localized Counting Module (LCM) and use several instances of
the designed LCM modules in our backbone network. In an LCM
module, we learn some features from the input image. After that,
we summarize the features to reduce irrelevant features, and then
aggregate them with original features. In this process, we localize
the persons accurately in an efficient manner. Fig. 2(a) shows the
block diagram of an LCM module. We can see that one LCM mod-
ule contains one convolutional module and N number of residual
locks (also known as bottleneck). In a residual block, one point
onvolution layer having 1 × 1 kernel size is used before a 3 × 3
onvolution layer to compress the feature representation that
nhances the learning ability of the network [20]. After that, one
hortcut connection is used to aggregate the compressed out-
ut with the previous layer’s output. These shortcut connections
lleviate the vanishing gradient problem at deeper layers [19]
hat results in better accuracy. In Fig. 2, LCM-32-R denotes an
CM module having residual layers and LCM-32 denotes an LCM
odule having no residual layer.
In our backbone network, we use mostly 3 × 3 filters in

he convolutional modules and double the number of channels
fter every pooling step. Fig. 2(c) shows the structure of a con-
olutional module used in LC-Net. Here, Conv-32-3-1 denotes a

onvolution layer having 32 filters, 3 × 3 kernel size, and one
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Fig. 1. Block diagram of our proposed LC-Net architecture.
tride. After each convolutional layer, we use batch normalization
n order to stabilize training, speed up convergence, and regular-
ze the model [21]. Moreover, we use Leaky Rectified Linear Unit
LeakyReLU) layer as the activation function to avoid the dying
roblem caused by classical ReLU [22].
We provide 512 × 512 RGB image patches to the input layer

and get 64 × 64 feature maps from the backbone. In order
o downsample the image patch, we use MaxPooling operation
nstead of strided convolution to reduce the learning parameters.
e use only three MaxPooling operations to abstract our images

uch that the output feature map of our feature extractor contains
nough spatial information for localization. In deeper layers, we
se dilated convolution to expand the receptive field without
osing resolution as suggested in [5]. We denote such dilated LCM
locks in Fig. 1(b) using the postfix ‘D’ such as LCM-256-R-D.

.2. Head network

The head network receives feature map from the backbone
etwork as its input and generates a final prediction as its output.
n the head network, we apply dilation operation to learn deep
eatures without decreasing the resolution. Thus, we increase
he accuracy of our network in an efficient manner. We present
he summarized architecture of the head network in Fig. 1(b).
ere, we use three UpSampling layers to increase the resolution
f the feature map and we get the same input resolution as
utput. Note that, we do not use strided transpose convolution
o upsample the feature map in order to reduce the network
omplexity. Besides, after each UpSampling layer, we halve the
umber of channels and provide one LCM block and one pair
f dilated convolutional modules to expand the receptive field.
fter the third UpSampling layer, the network learns rich in-

ormation similar to the ground truth feature map during the

3

training stage. Hence, we provide some additional layers to learn
more high-level information from the feature map. For example,
we use two LCM modules having no residual layer (Fig. 2(b))
and one sharpening module 2(d). The sharpening module (SM)
contains one AveragePooling layer followed by one MaxPooling
layer, where both of them have 3 × 3 pool size and one stride. The
former layer enlarges the value of true location and suppresses
the noises of a feature map. On the other hand, the latter layer
highlights the strongest features and suppresses the weakest
ones. Thus, this module sharpens the internal feature map, which
helps the LC-Net to achieve good precision. Finally, we add one
point convolutional layer with sigmoid activation function for
binary classification. It is denoted in Fig. 1(b) using the postfix
‘S’. Next, we describe our training method of this whole deep
learning architecture.

3.3. Specialty of our proposed architecture

The specialty of our proposed LC-Net architecture is that we
jointly use residual layers and dilated convolution. The residual
layers reduce the computational cost of the architecture that
improves the efficiency of the LC-Net without lowering the accu-
racy. On the other hand, the dilated convolution learns the deep
features without losing the resolution of the feature maps. It en-
hances both the accuracy as well as the computational efficiency
of LC-Net. By using these special architectural blocks, our LC-Net
can locate the persons precisely in an efficient manner.

4. Training method

During the training stage, LC-Net learns the mapping between

input image patches and ground truth feature maps. Prior to
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raining, we need to pre-process our training dataset and cor-
esponding ground truth. We describe the pre-processing and
raining stages in detail in the next subsections.

.1. Data pre-processing

In the pre-processing stage, we prepare the input image patch
nd corresponding ground truth to feed the LC-Net. We divide
ur input image into a grid of 512 × 512 pixels. Here, we use
ero-padding if the dimensions of an image are not divisible
y 512. On the other hand, we use plus (+) annotated feature
ap as the ground truth of a particular image patch, since the
lus annotation achieves better localization accuracy than dot
nnotation as stated in [7]. In a dot annotated feature map, one
ot per person is used. Around each dot, the plus annotation
dds a small neighborhood that helps the model to learn better.
lthough the existing dataset provides only dot annotation, we
an convert them into plus annotation through a simple 2D con-
olution provided by OpenCV library [23]. Here, we need to use
he following 3 × 3 kernel, K = [[0, 1, 0], [1, 1, 1], [0, 1, 0]]. We
erform this patch generation process only once, and save both
he image patch and corresponding feature map patch for further
se. In addition to patch generation, we calculate the channel-
ise mean and standard deviation of the image pixel values of
he dataset for data augmentation purpose. Next, we describe the
raining stage of LC-Net along with the implementation details.

.2. Training details

As our proposed LC-Net is an end-to-end trainable structure,

e adopt a very straightforward way to train the LC-Net over

4

he training dataset. Prior to training, we perform some data aug-
entation tasks to increase the model performance. For example,
e standardize the image data to zero mean and unit variance
sing our previously calculated mean and standard deviation of
ixel values. After that, we perform horizontal flip operation
sing a uniform random distribution. If we get a head for an
mage, we flip both the image and the corresponding feature
ap. Next, we construct our proposed CNN architecture LC-Net
sing Keras library [24]. We set the initial random weights of all
he Keras layers using He-Uniform distribution [25], since this
nitializer helps a ReLU activated network to perform better. Here,
e provide a seed for this distribution to get reproducible results.
We represent a person in our ground truth feature map using

plus shape (five ones). If there is no person, the corresponding
ixels are zero in the ground truth map. Hence, our ground
ruth feature map is a binary 2D array. In order to learn this
inary map, we use binary cross-entropy as the loss function.
ere, the number of positive classes is much lower than the
umber of negative classes. To compensate this class imbalance,
e set the weight of the positive class to 100 as adopted in [7].
n the other hand, we use a custom metric named ‘localized
ounting error’ to evaluate our model during training time. Here,
e calculate the absolute counting error between ground truth
nd predicted map after localization. For this purpose, we post-
rocess both the ground truth and predicted map. Here, we
onvert the plus annotated ground truth to dot annotated map
hrough a 2D convolution with the kernel, J =

1
5 × K , i.e., J =

[0, 0.2, 0], [0.2, 0.2, 0.2], [0, 0.2, 0]]. After rounding the filtered
map, we get the clean dot annotated ground truth. Now, we can
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Table 1
Summary of the benchmark crowd datasets used for evaluation.
Dataset Training

images
Test images Person count Average resolution

(H × W )
Crowd density (per megapixel)

Min Avg Max Minimum Average Maximum

NWPU-Crowd [8] 3609 1500 0 412 20033 2191 × 3209 0 76 2092
UCF-QNRF [4] 1201 334 49 815 12865 2011 × 2902 3 412 17292
ShanghaiTech-A [6] 300 182 33 501 3139 589 × 868 66 1111 7983
ShanghaiTech-B [6] 400 316 9 124 578 768 × 1024 11 157 735
calculate the number of persons present in the ground truth map
through counting the dots.

To localize persons in the predicted feature map, we perform
verage pooling and max pooling operations over the same pre-
icted map with 3 × 3 pool size and one stride. After that, we
ixel-wise compare both the pooled maps and perform element-
ise multiplication as done in [8]. This enables identifying the

ocal peaks efficiently. Additionally, we round the computed fea-
ure map such that only strong peaks exist, i.e., the peaks having
ess than 50% confidence get nullified. Now, we can calculate the
umber of persons in the predicted map through counting the
eaks. If we subtract the predicted count from the true count,
e get the localized counting error. Using this custom metric,
e save the best model having the lowest validation error during
raining time. Note that, we use 25% of training images as the
alidation dataset. Besides, we use Adam algorithm [26] with
efault parameters as the optimizer for the training purpose.

. Experimental evaluation

In this section, we present experimental evaluation of our
C-Net against state-of-the-art approaches over four benchmark
atasets for the crowd localization task. First, we describe our
eep learning environment setup used in both training and test-
ng stages.

.1. Environment setup

We use a GPU instance of Amazon Web Service to train and
est our models over the datasets. To do so, we launch a Ubuntu
6.04 EC2 P3 instance (p3.2xlarge) hosted in the US East (N.
irginia) [27]. This instance provides up to 10 Gbps of network-
ng throughput, 8 custom Intel Xeon Scalable (Skylake) vCPUs,
NVIDIA V100 Tensor Core GPU with 16 GB of memory, and
1 GB main memory. We use the Anaconda environment having
ensorFlow 2.3 framework with Python 3.7 and CUDA 10.2 in our
xperimental evaluation. Using this setup, we evaluate our crowd
atasets, which we present next.

.2. Crowd dataset and challenges

We evaluate our LC-Net over four benchmark crowd datasets
amely NWPU-Crowd [8], UCF-QNRF [4], ShanghaiTech-A [6], and
hanghaiTech-B [6]. To the best of our knowledge, the NWPU-
rowd and UCF-QNRF are the most recently available compre-
ensive datasets for crowd localization having high-resolution
mages and tremendous annotations. The NWPU-Crowd dataset
ontains 3609 training images and 1500 test images. Besides,
he UCF-QNRF contains 1535 images in total, where 132 training
mages and 29 test images have been collected from Hajj and
imilar footage. On the other hand, ShanghaiTech-A contains 482
mages having congested crowds, which are crawled from the
nternet. Besides, ShanghaiTech-B contains 716 low-dense images
aken from surveillance cameras in Shanghai. We summarize the
haracteristics of these datasets in Table 1. Here, it is worth men-
ioning that the ShanghaiTech datasets contain low-resolution
5

images and the number of training images is much smaller than
NWPU-Crowd and UCF-QNRF datasets.

In addition to these datasets, there exists other crowd datasets
in the literature such as UCSD [28], Mall [29], UCF-CC-50 [30],
Venice [12], etc. However, these datasets have severe limita-
tions to evaluate a crowd localization algorithm. For example,
UCSD and Mall datasets contain only a single surveillance scene
that lacks data diversity [8]. Besides, UCF-CC-50 and Venice
datasets contain 50 and 167 images respectively, which is too
small to train a robust deep learning model [8]. On the other
hand, our adopted datasets namely NWPU-Crowd, UCF-QNRF,
ShanghaiTech-A, and ShanghaiTech-B contain a large number of
diversified images. For these reasons, we consider these four
datasets leaving the other remaining ones in our performance
evaluation.

Although the NWPU-Crowd and UCF-QNRF datasets contain a
lot of high-quality images, they create several challenges during
the training stage. Next, we present the major two challenges in
this regard along with their solutions.

5.2.1. High definition images having sparse crowd
Both NWPU-Crowd and UCF-QNRF datasets contain several

high-resolution images sometimes having low crowd density. For
example, a particular test image of UCF-QNRF has a resolution
of 4912 × 7360, i.e., 36 megapixels, and contains 130 persons
resulting in only 4 persons per unit megapixels. If we divide this
image into a grid of 512 × 512 pixels, most of the person heads
are covered by two or more sub-images. As a result, the contex-
tual information of this image gets lost during patch generation.
Besides, we observe that these low-dense but high-resolution
images produce low precision and recall resulting in a poor F1
score. Therefore, we need to resize such images according to
crowd density during the pre-processing stage. Next, we describe
this novel data augmentation technique.

Density-based image resizing technique. We pick an image to
resize, if the resolution of the image is greater than Full HD
(1920 × 1080) and the crowd density is less than 50. Note
that, we set this criterion as per our observations. In order to
maintain image quality, first, we reduce the resolution of an
image to its nearest commercial standard resolution. To be more
specific, if the resolution of an image is greater than 4K Ultra HD
(3840 × 2160), we reduce the resolution to 4K Ultra HD based
on the original aspect ratio. Then, we calculate the crowd density
again. If it is still not less than 50, we reduce the resolution
to Full HD. We do not further reduce the resolution, since it
degrades image quality. Note that, we resize the ground truth
feature map of such images accordingly. In this way, we resize
the training images of NWPU-Crowd and UCF-QNRF datasets. For
testing purpose, we resize all very high definition (greater than 4k
Ultra HD) images of UCF-QNRF test set to 4K Ultra HD based on
the original aspect ratio, since we do not know the crowd density
of test images prior to evaluation.
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.2.2. Imbalanced dataset
Most of the sub-images generated from the NWPU-Crowd and

CF-QNRF datasets contain either no people or a few people.
hese sub-images make the training dataset imbalanced that
akes the model biased. Besides, they incur unnecessary compu-

ational costs resulting in a much longer training time. In order
o reduce the bias, we remove some of the sub-images from
he training dataset using a seeded uniform random distribution
imilar to [4]. To do so, first, we calculate the histogram of people
ount in the training dataset using Jenks natural breaks [31] as
he optimum bin width. After that, we reduce the sub-images of
igh-frequency bins. Thus, we reduce the bias from the training
ub-images of NWPU-Crowd and UCF-QNRF.

.3. Evaluation protocols

We evaluate our trained model using the test datasets and
easure its precision, recall, and F1 score. To do so, first, we
enerate image patches and corresponding ground truth feature
aps from the test images similar to training images. Besides,
e normalize the test image patches similar to training patches.
owever, we do not augment the test patches. We feed the
mage patches to LC-Net and get the predicted feature maps. After
hat, we post-process the feature maps and count the number of
redicted persons. Note that, we accumulate the predicted count
or a particular test image from its sub-images. Next, we evaluate
he predictions using three state-of-the-art localization protocols
amely Euclidean protocol, Gaussian protocol, and adaptive pro-
ocol [8]. The basic difference among these protocols is the way to
reat a predicted point as a true positive. Next, we describe each
f them.

.3.1. Euclidean protocol
Euclidean protocol is proposed by Idrees et al. [4] for UCF-

NRF dataset. It considers the Euclidean distance between pre-
icted and ground truth points. For this purpose, we perform
maximum bipartite matching between the predicted points

nd ground truth points. Next, we assign each predicted point
o a particular true point if they are not previously assigned to
thers and their distance is less than a particular threshold (δ).
n this way, we get a list of true positive points. Dividing the
rue positives by predicted person count and real person count
ive precision and recall respectively. The main drawback of this
rotocol is that it gives the same importance to all predicted
oints under a particular radius of a ground truth. Hence, a higher
onfident point may be ignored. It implies that wrong detection
an be treated as a true positive due to the radius limit.

.3.2. Gaussian protocol
Liu et al. [7] have proposed the Gaussian protocol to overcome

he drawbacks of the Euclidean protocol. In this protocol, first,
e sort the predicted points in descending order based on their
onfidence scores. After that, we classify each predicted point
equentially into a true positive or false positive. A predicted
oint and its nearest true person will be matched successfully,
f they are not matched previously with others and their affinity
s greater than a particular threshold. In order to measure the
ffinity, we impose an un-normalized Gaussian function around
ach true point using σ as the variance. If the Gaussian output
f the predicted point, i.e., fg (x), is greater than a particular
hreshold, we mark the predicted point as a true positive. Using
he true positives, we calculate the precision and recall. The main
rawback of this protocol is that it does not consider the scale
ariation of heads in an image. It imposes the same Gaussian
ariance to both closer heads and distant heads. However, distant
ead areas look smaller due to perspective variation in an image.
6

5.3.3. Adaptive protocol
Wang et al. [8] have proposed this scale-aware protocol that

considers the scale variation of heads in an image. Similar to
the Euclidean protocol, first, we perform a maximum bipartite
matching between the predicted points and ground truth points.
Next, we assign each predicted point to a particular true point if
they are not previously assigned to others and their distance is
less than a particular threshold (σ ). For each head with the size
of h × w, two thresholds are defined such as σs = min(h, w) and
σl =

√
h2 + w2. In this way, we calculate precision and recall.

.4. Performance evaluation

We evaluate the performance of our proposed LC-Net over
our crowd datasets in comparison to existing methods. LC-Net
utperforms all the alternative methods over all the datasets
ased on the F1 score. Note that, we average the results over
ive iterations for a particular training configuration in the per-
ormance evaluation, as the neural network possesses stochastic
ature by default. However, the existing methods are yet to
onsider this stochastic nature. Next, we present the results for
ach dataset.

.4.1. UCF-QNRF dataset
Table 2 shows the comparative results of LC-Net against three

ecent methods over UCF-QNRF dataset. From this table, we can
ee that LC-Net achieves the highest F1 score among all the
ther methods based on the Euclidean protocol. Note that, the
uthors of this protocol (Idrees et al. [4]) averaged the localization
esults over four distance thresholds (δ) ranging from 1 to 100
ixels. However, they did not mention the exact value of these
our distance thresholds. Hence, we assume four equal-spaced
hresholds within this range, i.e., 20, 40, 60, and 80.

We compare the performance of LC-Net against an existing
rowd localization method named as RAZ_Net (Liu et al. [7])
ver UCF-QNRF dataset based on Gaussian protocol for a different
ombination of σ and fg (x). Here, smaller σ and higher fg (x)
epresents strict threshold condition. The comparison results are
hown in Table 3. It confirms that LC-Net achieves the highest
erformance in terms of F1 score. To be more specific, LC-Net
erforms better under strict conditions than relaxed ones.
In addition to crowd localization methods, we compare the

erformance of LC-Net against existing several crowd count-
ng methods on UCF-QNRF dataset. As these methods have no
rowd localization ability, we use the pre-processing and post-
rocessing tasks of LC-Net and replace the architectural part only.
he comparison results based on Gaussian protocol are shown in
able 4. It confirms that LC-Net achieves the highest localization
ccuracy. Although MCNN [6] requires a minimum number of
omputational resources, it exhibits very poor localization accu-
acy. Among the other methods, LC-Net requires a considerably
ower number of computational resources.

.4.2. NWPU-crowd dataset
Table 5 shows the performance comparison of LC-Net against

wo recent methods over NWPU-Crowd test dataset based on
he adaptive protocol. The results have been obtained from the
fficial website of NWPU-Crowd. We can see that LC-Net confirms
he best localization performance based on the F1 score. Under
strict threshold, LC-Net achieves better performance than the

elaxed threshold.

.4.3. ShanghaiTech Datasets
For ShanghaiTech datasets, we present the performance com-

arison of LC-Net against RAZ_Net [7] in Table 3. We can see
hat LC-Net achieves better performance over both ShanghaiTech
atasets in most of the cases. As the number of training images
n both ShanghaiTech datasets is very low, LC-Net does not attain
omprehensive learning to exhibit better test performance [8].
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Table 2
Performance comparison of LC-Net against existing crowd localization methods on UCF-QNRF dataset based on Euclidean protocol.
Method Average Precision (%) Average Recall (%) Average F1 Score (%)

Method in [32] 75.5 49.9 60.1
MCNN [4,6] 59.9 63.5 61.7
LCFCN [33,34] 77.9 52.4 62.7
DenseNet63 [4,15] 70.2 58.1 63.6
ResNet74 [4,19] 61.6 66.9 64.1
CL [4] 75.8 59.8 66.8
Encoder–Decoder [4,35] 71.8 63.0 67.1
LC-Net 74.3 (±1.4) 66.5 (±2.3) 70.1 (±0.9)
Table 3
Performance comparison of LC-Net against existing crowd localization method over UCF-QNRF, ShanghaiTech-A, and ShanghaiTech-B datasets based on Gaussian
protocol.
Dataset σ Method fg (x) >= 0.5 fg (x) >= 0.75

Average
Precision (%)

Average
Recall (%)

Average F1
Score (%)

Average
Precision (%)

Average
Recall (%)

Average F1
Score (%)

UCF-QNRF

5 RAZ_Net [7] 7.9 24.2 11.9 3.1 14.3 5.1
LC-Net 42.2 (±1.2) 41.2 (±0.5) 41.7 (±0.4) 27.0 (±0.8) 26.6 (±0.2) 26.8 (±0.3)

20 RAZ_Net [7] 41.4 60.2 49.1 28.7 49.7 36.4
LC-Net 70.5 (±1.5) 65.1 (±2.0) 67.6 (±0.6) 63.4 (±1.5) 59.4 (±1.6) 61.3 (±0.4)

40 RAZ_Net [7] 57.3 71.9 63.8 48.1 65.2 55.4
LC-Net 71.3 (±1.5) 65.6 (±2.1) 68.3 (±0.7) 66.7 (±1.5) 61.6 (±1.9) 64.0 (±0.6)

Shanghai-
Tech-A

5 RAZ_Net [7] 36.0 40.9 38.3 20.5 57.9 30.3
LC-Net 62.1 (±0.8) 65.5 (±1.0) 63.7 (±0.4) 46.7 (±0.6) 49.2 (±1.1) 47.9 (±0.6)

20 RAZ_Net [7] 66.7 79.9 72.7 60.1 75.3 66.9
LC-Net 77.9 (±1.3) 81.3 (±0.9) 79.5 (±0.4) 73.0 (±1.2) 76.3 (±0.9) 74.6 (±0.2)

40 RAZ_Net [7] 74.5 84.7 79.3 69.9 82.0 75.5
LC-Net 78.4 (±1.4) 81.8 (±0.9) 80.0 (±0.4) 74.1 (±1.3) 77.2 (±0.8) 75.6 (±0.3)

Shanghai-
Tech-B

5 RAZ_Net [7] 45.6 66.1 53.4 28.1 51.6 36.4
LC-Net 64.2 (±0.6) 66.6 (±1.1) 65.4 (±0.5) 47.5 (±0.5) 49.1 (±0.9) 48.3 (±0.6)

20 RAZ_Net [7] 68.7 82.0 74.8 64.9 79.4 71.4
LC-Net 80.7 (±0.9) 83.8 (±1.3) 82.2 (±0.5) 74.6 (±0.8) 77.4 (±1.2) 76.0 (±0.4)

40 RAZ_Net [7] 75.3 85.7 80.2 71.6 83.4 77.1
LC-Net 81.0 (±0.9) 84.0 (±1.3) 82.5 (±0.4) 73.4 (±0.8) 76.0 (±1.1) 74.7 (±0.3)
Table 4
Performance comparison of LC-Net against existing crowd counting methods on UCF-QNRF dataset based on Gaussian protocol.
Method σ = 20, fg (x) >= 0.5 σ = 40, fg (x) >= 0.5 GFLOPS FPS (K80) Size (MB)

Average Pre (%) Average Rec (%) Average F1 (%) Average Pre (%) Average Rec (%) Average F1 (%)

MCNN [6] 52.8 (±2.0) 57.2 (±3.9) 54.8 (±1.3) 54.1 (±2.0) 58.6 (±4.1) 56.1 (±1.4) 17.7 1.18 0.7
VGG-19 [18] 68.1 (±2.4) 61.0 (±1.5) 64.3 (±1.7) 68.8 (±2.3) 61.6 (±1.5) 65.0 (±1.6) 378.2 0.16 86.6
CSRNet [5] 68.1 (±2.0) 61.6 (±3.4) 64.7 (±2.3) 69.0 (±2.0) 62.2 (±3.4) 65.4 (±2.4) 320.2 0.25 65.3
LC-Net 70.5 (±1.5) 65.1 (±2.0) 67.6 (±0.6) 71.3 (±1.5) 65.6 (±2.1) 68.3 (±0.7) 118.9 0.30 19.3
Table 5
Performance comparison of LC-Net against existing crowd localization methods on NWPU-Crowd dataset based on adaptive protocol.
Method σ = s σ = l

Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

Faster RCNN [8,36] 89.4 3.3 6.3 95.8 3.5 6.7
VGG+GPR [8,37] 45.3 40.2 42.6 55.8 49.6 52.5
FPN [33] 57.1 46.1 51.0 65.9 53.3 58.9
RAZ_Loc [7,8] 57.6 47.0 51.7 66.6 54.3 59.8
TinyFaces [8,38] 49.1 56.6 52.6 52.9 61.1 56.7
AutoScale [33] 59.1 50.4 54.4 67.3 57.4 62.0
LC-Net 61.3 56.4 58.7 65.6 60.3 62.8
5.4.4. Ablation studies
We present the ablation study of our proposed LC-Net over

CF-QNRF dataset in Table 6. It confirms the effectiveness of both
esidual layers and dilated convolution in our proposed network.
esides, the impact of density-based image resizing technique
n the performance of LC-Net over NWPU-Crowd validation and
CF-QNRF test datasets is shown in Table 7. It also confirms the
ffectiveness of our proposed data augmentation technique. Here,
he evaluation is based on the adaptive protocol for NWPU-Crowd
nd Euclidean protocol for UCF-QNRF respectively.
7

5.5. Qualitative analysis

Fig. 3 presents the predictions of LC-Net over four test images
of UCF-QNRF dataset. Here, we denote a ground truth using a
green circle and a predicted location using a red point. The center
of a green circle is the actual ground truth location and the radius
of that circle is δ. If a predicted point falls within the circular area
of a ground truth location, we treat the predicted point as a true
positive. Thus, the figures demonstrate that our proposed LC-Net
localizes the persons with high precision under a strict threshold.
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Table 6
Ablation studies of LC-Net over UCF-QNRF dataset based on Gaussian protocol.
Residual
layers

Dilated
convolution

σ = 20, fg (x) >= 0.5 σ = 40, fg (x) >= 0.5

Average
Precision (%)

Average
Recall (%)

Average F1
Score (%)

Average
Precision (%)

Average
Recall (%)

Average F1
Score (%)

No No 68.1 (±3.6) 61.9 (±2.3) 64.8 (±1.4) 69.0 (±3.6) 62.5 (±2.4) 65.5 (±1.4)
No Yes 69.3 (±2.8) 61.3 (±1.9) 65.0 (±0.6) 70.2 (±2.7) 62.1 (±2.0) 65.8 (±0.6)
Yes No 70.4 (±3.3) 64.2 (±1.3) 67.1 (±1.9) 71.2 (±3.4) 64.8 (±1.4) 67.8 (±1.9)
Yes Yes 70.5 (±1.5) 65.1 (±2.0) 67.6 (±0.6) 71.3 (±1.5) 65.6 (±2.1) 68.3 (±0.7)
Table 7
Impact of density-based image resizing technique on the performance of LC-Net on NWPU-Crowd validation and UCF-QNRF test datasets based on adaptive and
Euclidean protocols respectively.
Dataset Density-based

image resizing
σ Precision (%) Recall (%) F1 Score (%) σ Precision (%) Recall (%) F1 Score (%)

NWPU-Crowd No s 54.4 57.7 56.0 l 58.3 61.8 60.0
Yes 63.3 60.5 61.9 67.4 64.5 65.9

UCF-QNRF No 20 66.0 56.9 61.1 40 70.4 59.7 64.6
Yes 70.0 63.6 66.6 74.3 66.5 70.2
Fig. 3. Qualitative analysis over four test images in UCF-QNRF dataset, where a green circle represents the circular area around a ground truth location (radius,
δ = 10) as per Euclidean protocol and a red point represents a predicted location.
6. Real implementation

In this section, we discuss a real implementation of our pro-
posed approach using a client–server application. For the client
end, we develop a crowd image capturing module that uploads
the captured images to a web server. In the server end, we
develop a website to execute our crowd localization algorithm
and show the results in real-time. Next, we describe each of the
development phases in detail.

6.1. Development of image capturing module

In our image capturing module, we use a Hikvision 1.0 MP
(1280 × 720) IP camera that has Pan–Tilt–Zoom features, night
8

vision capability, and Internet connectivity [39]. It sends the
captured images to a Raspberry Pi using a wireless network. Here,
we use a Raspberry Pi 4 Model B that has 4 Cortex-A72 (ARMv7)
CPUs (1.5 GHz) and 4 GB main memory [40]. The Raspberry
Pi uploads the captured image to the cloud (web server) using
a wireless network. We show the architecture of this image
capturing module in Fig. 4(a).

We use Python programming language to implement the func-
tionalities of the capturing module. Here, we send the captured
image along with its time-stamp through a POST request to the
server. To ensure secure data transmission, we send a personal
access token through the header of the POST request that protects
the server from intruders. Note that, the access token is provided
by our web application for a particular capturing module.
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Fig. 4. Real implementation of our proposed approach.
.2. Development of web application

To perform the crowd monitoring tasks, we develop a web
pplication that receives the crowd images from the capturing
odule. After that, it runs the LC-Net model over the captured
rowd images and generates the localized crowd counting val-
es. Finally, it stores the generated values and visualizes them
n a graphical manner. We show the architecture of this web
pplication in Fig. 4(b).
To implement these functionalities, we use PHP-based Laravel
framework [41] that implements conventional model–view–

ontroller architecture for web services. We build a Laravel API
o receive the data sent by Raspberry Pi, run the LC-Net model,
nd store the information in a MySQL database.
For end-users, we design a web interface through using CSS-

ased Tailwind framework [42] and JavaScript-based Chart.js li-
rary [43]. In this interface, we present two charts on crowd flow
nd estimation time. The chart on crowd flow shows the localized
rowd counting values as per the time-stamps of image capturing.
esides, the chart on estimation time shows the inference time
nd total time required for performing the crowd localization
9

Table 8
Data collection scenario for real-world evaluation.
Attribute Online evaluation

Location New Market Area, Dhaka, Bangladesh
Date October 14, 2021
Time 5:18 PM - 5:41 PM
Duration 23 min
# of images 57

tasks. Here, inference time refers to the time required to get the
localized counting values from LC-Net. On the other hand, the
total time refers to the time duration from the image capturing
to database insertion, which involves all the processing on the
image. In short, the total time is the sum of capturing time,
inference time, and network latency.

We host our developed web application on a web server. Our
web server has two Intel Xeon E5-2680 CPUs (2.40 GHz) and 8 GB
main memory. Note that, our web server has no GPU. Our web
application can be accessed through this link: http://nec.cse.buet.
ac.bd/people.

http://nec.cse.buet.ac.bd/people
http://nec.cse.buet.ac.bd/people
http://nec.cse.buet.ac.bd/people
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Fig. 5. Crowd data collection at the entrance of New Market Area, Dhaka, Bangladesh.

Fig. 6. Crowd counting results at the entrance of New Market Area, Dhaka, Bangladesh.

10
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Fig. 7. Outputs of real-time crowd localization using LC-Net at New Market Area, Dhaka, Bangladesh.
.3. Real-time evaluation

To evaluate the complete system in real-time, we setup our
mage capturing module on a foot-over bridge at the New Market
rea in Dhaka, capital of Bangladesh (a developing country of
outhern Asia). We collect crowd images from the entrance of
his market on October 14, 2021, from 5:18 PM to 5:41 PM. We
resent the details of our data collection in Table 8. Fig. 5 shows
he location of data collection and a snapshot of real deployment.
ere, our client module captures a crowd image and uploads it
o the server over an available mobile network (3G/4G). Here, we
se a laptop as the power source for both Raspberry Pi and IP
amera.
In the server, we run the LC-Net model (trained over UCF-

NRF [4] dataset) on the captured images. From the server, we get
he charts on crowd flow and estimation time as shown in Fig. 6.
ere, we can see that the number of persons is varying over time.
rom the time chart, we can see that most of the images require
6–21 s for performing inference tasks. The reason behind such
igh inference time is that there is no GPU available on our web
erver. Our system requires 20–26 s for performing full operation
overing both inference and communication to the server. Here,
he time difference between the total time and inference time
11
represents model initialization time and network latency. Note
that, the network latency is introduced by the image transmission
between IP Camera to Raspberry Pi and Raspberry Pi to server.

We show six example output images of our real-time crowd
localization in Fig. 7. Here, we can see that the number of pre-
dicted persons is varying according to the density of the crowd as
shown in Fig. 6. Besides, these output images show that LC-Net
can pinpoint the persons in most of the cases.

From our experimental evaluation, we can see that LC-Net
localizes the people more accurately and quickly than state-of-
the-art approaches. It implies that LC-Net can provide a more
accurate initial state for a crowd tracking algorithm in an effi-
cient manner, which is required to estimate the crowd flow in
a particular event. Note that, the crowd flow estimation tasks
are required for allocating appropriate manpower and other re-
sources to ensure public safety and security [9]. Therefore, our
proposed LC-Net and its deployment similar to what we show
in this section can facilitate the tasks of monitoring authority in
making decisions for crowd management.

7. Conclusion and future work

Crowd management in case of large mass gatherings requires
careful monitoring to ensure public safety and security that can
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e facilitated by visual crowd analysis tasks such as crowd count-
ng, localization, and tracking. Existing crowd counting work
dopt a density map-based approach to count the persons with
inimal error, however, these approaches lack spatial informa-

ion of the people that often makes them unusable in advanced
rowd analysis tasks such as crowd tracking, crowd flow es-
imation, etc. Hence, we propose a novel deep learning archi-
ecture named LC-Net through exploiting residual layers and
ilated convolution for precise crowd localization in an efficient
anner. Experimental evaluation of LC-Net shows a substantial
erformance improvement over four different crowd benchmark
atasets compared to state-of-the-art alternatives.
For implementing our proposed deep learning architectures

n the real-world, we propose a client–server application using
Raspberry Pi (as a client) and a web server. The Raspberry
i captures the crowd images and uploads them to the web
erver. In the server, we perform crowd localization tasks over
aptured images and visualize the counting values in a website.
his client–server demonstrates the applicability of our proposed
pproach.
The strength of our approach is that it can pinpoint medium-

cale heads more accurately from the highly congested scenarios.
owever, it cannot perform well in the case of too small-scale or
oo large-scale heads. To handle this scale variation, we plan to
evelop a multi-scale localization network in the future. Besides,
e will devise and integrate a crowd tracking module to predict
he flow of the crowd.
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